Dahl, 1970), $[Mo_2(\eta-C_5H_4CHPh_2)_2(CO)_6]$, 3.227 Å(Drews & Behrens, 1985), $[Mo_2(\eta-C_5H_4CH_2CH_2CH_2-OH)_2(CO)_6]$, 3.213 Å (Coolbaugh, Coots, Santarsiero & Grubbs, 1985), $[Mo_2(\eta-C_5H_5)_2(CH_3NC)(CO)_5]$, 3.230 Å (Adams, Brice & Cotton, 1973), and $[Mo_2-(\eta-C_5H_5)_2\{C(C_6H_4CH_3)_2\}\{N_2C(C_6H_4CH_3)_2\}(CO)_3]$, 3.052 Å (Messerle & Curtis, 1982). The bond length in $[Mo_2(\eta-C_5Me_5)_2(CO)_6]$ is 3.281 (1) Å and is the longest unsupported Mo–Mo single bond so far observed. Additional features of interest are the *trans* disposition of the C₅Me₅ ligands and the slight bending at carbon in the four carbonyls *cis* to the Mo–Mo bond. Both features are observed in the parent compound, $[Mo_2-(\eta-C_5H_5)_2(CO)_6]$ (Adams, Collins & Cotton, 1974).

We thank the SERC for financial support and BP (Sunbury) for a CASE Award (NAC).

References

- Adams, R. D., Brice, M. D. & Cotton, F. A. (1973). J. Am. Chem. Soc. 95, 6594–6602.
- ADAMS, R. D., COLLINS, D. M. & COTTON, F. A. (1974). Inorg. Chem. 13, 1086–1090.
- ARZOUMANIAN, H., BALDY, A., PIERROT, M. & PETRIGNANI, J.-F. (1985). J. Organomet. Chem. 294, 327-331.
- Coolbaugh, T. S., Coots, R. J., Santarsiero, B. D. & Grubbs, R. H. (1985). *Inorg. Chim. Acta*, **98**, 99–105.
- DREWS, R. & BEHRENS, U. (1985). Chem. Ber. 118, 888-894.
- HANDY, L. B., RUFF, J. K. & DAHL, L. F. (1970). J. Am. Chem. Soc. 92, 7312-7326.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MESSERLE, L. & CURTIS, M. D. (1982). J. Am. Chem. Soc. 104, 889-891.
- SHELDRICK, G. M. (1985). SHELXTL. An Integrated System of Solving, Refining and Displaying Crystal Structures from Diffraction Data, revision 5. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1988). C44, 570-572

Di- μ -carbonyl-nonacarbonyl- μ_4 -(α - α' - η -diphenylacetylene)-(μ_4 -diphenylnitrene)tetraruthenium(4 Ru-Ru)

BY ARNOLD L. RHEINGOLD* AND DONNA L. STALEY

Department of Chemistry, University of Delaware, Newark, DE 19716, USA

AND SUNG-HWAN HAN AND GREGORY L. GEOFFROY

Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA

(Received 18 September 1987; accepted 19 October 1987)

Abstract. $[Ru_4(C_{14}H_{10})(C_6H_5N)(CO)_{11}], M_r = 981.71,$ monoclinic, $P2_1/c$, a = 16.315 (3), b = 20.037 (4), c= 19.749 (4) Å, β = 95.75 (1)°, V = 6424 (2) Å³, Z = 8, 2 independent molecules/asymmetric unit, D_r $= 2.030 \text{ g cm}^{-3}$, $\lambda(Mo K\alpha) = 0.71073 \text{ Å},$ $\mu =$ 18.70 cm^{-1} , F(000) = 3680, T = 296 K, $R_F = 2.99\%$ for 7583 observed reflections and 776 parameters. The structure is the phenyl analog of a previously reported (μ_a-NH) -(diphenylacetylene)tetraruthenium cluster. The two independent molecules are chemically indistinguishable. The structure is a pentagonal bipyramid with an equatorial plane containing two Ru atoms, the acetylene residue and the nitrene N atom. This plane is capped by two Ru(CO), units with two edge-bridging carbonyl groups.

Experimental. Orange crystals from hexane $(0.41 \times 0.41 \times 0.41 \text{ mm})$; Nicolet R3m diffractometer with

0108-2701/88/030570-03\$03.00

graphite monochromator; ω scans; lattice parameters from least-squares fit of 25 reflections ($30 \le 2\theta \le 35^{\circ}$); no absorption correction ($\mu = 18 \cdot 7 \text{ cm}^{-1}$, uniform crystal shape, $T_{\max}/T_{\min} = 1 \cdot 11$); $2\theta_{\max} = 48^{\circ}$ ($h = \pm 19$, k = +23, l = +23); standard reflections 12,0,2, $\overline{6}$,15,1, $\overline{5}$,4,14. 10 933 reflections collected, 10 090

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters $(Å^2 \times 10^3)$

 U_{eq} is the equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

	x	у	z	U_{eq}
Ru(1)	2285-1 (3)	5232-5 (2)	4721-1 (2)	33.4 (1)
Ru(2)	3160-3 (3)	6192-3 (2)	4060.3 (2)	$32 \cdot 1(1)$
Ru(3)	1223.9 (3)	6261-2 (2)	4804.5 (2)	30.6 (1)
Ru(4)	2310.9 (3)	7214-8 (2)	4555-0 (2)	29.9 (1)
Ru(1')	3256-6 (2)	4628.6 (2)	8647-6 (2)	28.7(1)
Ru(2')	4034-6 (3)	3731-5 (2)	9517-2 (2)	29.6 (1)
Ru(3')	3095-1 (3)	2684.7 (2)	9092.7 (2)	28-4 (1)
Ru(4')	2045.3 (2)	3629.1 (2)	8542.7 (2)	28.1 (1)

0 © 1988 International Union of Crystallography

^{*} Address correspondence to this author.

Table 1 (cont.)

	x	У	z	U_{eq}
C(1)	2435 (4)	4874 (3)	5645 (3)	49 (2)
C(2) C(3)	1579 (4)	4784 (3)	4404 (3)	48 (2)
C(4)	3480 (4)	6032 (3)	3185 (3)	48 (2)
C(5)	4274 (4)	5998 (3)	4342 (3)	49 (2)
C(7)	937 (4)	5886 (3)	4023 (3)	39(2)
C(8)	105 (4)	6174 (3)	4491 (3)	48 (2)
C(9)	1115 (4)	7232 (3)	5038 (3)	39 (2)
C(10)	2850 (4)	7989 (3)	4058 (3)	42(2)
C(12)	1765 (3)	6483 (3)	3797 (2)	28 (2)
C(13)	659 (2)	7195 (2)	3189(1)	44 (2)
C(14) C(15)	307	7530	2612	51(2)
C(16)	1385	7114	1971	49 (2)
C(17)	1737	6779	2548	40 (2)
C(18)	1374	6820	3157	32 (2)
C(20)	594 (2)	5388 (2)	30.55 (2)	32 (2) 48 (2)
C(21)	257	4977	2506	63 (3)
C(22)	760	4532	2195	71 (3)
C(23) C(24)	1937	4498	2411 2938	63 (3) 48 (7)
C(25)	1433	5354	3248	33 (2)
C(26)	2595 (2)	6581 (2)	6250 (2)	49 (2)
C(27) C(28)	2991	6615 6364	6909 7047	63 (3)
C(29)	4189	6079	6526	73 (3)
C(30)	3793	6045	5867	58 (2)
C(31)	2996	6296	5729	35 (2)
C(1')	4115 (4)	4858 (3)	8056 (3)	40 (2)
C(3')	3415 (3)	5459 (3)	9117 (3)	37 (2)
C(4')	4443 (3)	3968 (3)	10419(3)	44 (2)
C(5) C(6')	4368 (4)	2780 (3)	9237 (3)	44 (2)
C(7')	1619 (3)	3678 (3)	7620 (3)	39 (2)
C(8')	954 (3)	3774 (3)	8707 (3)	41 (2)
C(10')	2812 (4)	2023 (3)	8549(3) 9718(3)	35 (2)
C(11')	3452 (4)	1983 (3)	8527 (3)	40 (2)
C(12')	2666 (3)	3549 (3)	9656 (3)	29 (2)
C(13) C(14')	1445 (2)	3113	10897	57(2) 75(3)
C(15')	1620	2926	11473	64 (3)
C(16')	2473	2939	11461	61 (3)
C(17) C(18')	2812	3139	10872	47 (2) 32 (2)
C(19')	2682 (3)	4230 (2)	9489 (3)	29 (2)
C(20')	1575 (2)	5059 (2)	9670 (2)	53 (2)
C(21') C(22')	1205	5653	10733	74 (3)
C(23')	2273	5326	10990	62 (3)
C(24')	2643	4865	10588	47 (2)
C(25') C(26')	4551 (2)	4732 3023 (2)	7967(1)	36 (2) 43 (2)
C(27')	4925	2847	7388	52 (2)
C(28')	4571	3038	6745	53 (2)
C(29') C(30')	3467	3406	7260	51 (2) 41 (2)
C(31')	3821	3392	7903	29 (2)
0(1)	2496 (3)	4668 (3)	6185 (2)	77 (2)
O(2)	3/52 (3)	4454 (2)	4332 (3) 4263 (2)	61(2)
O(4)	3685 (3)	5915 (3)	2670 (2)	72 (2)
O(5)	4947 (3)	5871 (3)	4461 (3)	69 (2)
O(6) O(7)	3788 (3)	7585 (2)	3808 (2)	60 (2) 76 (2)
O(8)	-584 (3)	6120 (3)	4315 (2)	76 (2)
O(9)	723 (3)	7648 (2)	5261 (2)	56 (2)
O(10) O(11)	1796 (3)	8459 (2)	3762 (3)	69 (2) 75 (2)
O(1')	1934 (3)	5281 (2)	7683 (3)	69 (2)
O(2')	4631 (3)	4976 (2)	7742 (2)	66 (2)
O(3')	3501 (3)	5950 (2)	9398 (2)	57(2)
O(5')	5634 (3)	4246 (3)	9063 (3)	70 (2)
O(6')	4868 (3)	2391 (2)	9854 (2)	60 (2)
0(7')	1315 (3)	3687 (2)	7080 (2)	62 (2)
O(8) O(9')	1470 (3)	2199 (2)	8363 (3)	64 (2)
O(10')	2645 (3)	1644 (2)	10094 (2)	58 (2)
O(11')	3618 (3)	1573 (2)	8177 (2)	69 (2)
N'	3407 (2)	3569 (2)	8498 (2)	27(1)

Table 2. Selected bond lengths (Å)

Ru(1)-Ru(2)	2-795(1)	Ru(1)-Ru(3)	2.707(1)
Ru(1)-C(1)	1.953 (6)	Ru(1)-C(2)	1.899 (6)
Ru(1)-C(3)	1.920(6)	Ru(1)-C(19)	2.148 (5)
Ru(1)-N	2.152 (4)	Ru(2)-Ru(4)	2.710(1)
Ru(2)-C(4)	1.882 (6)	Ru(2)-C(5)	1.887 (6)
Ru(2)-C(6)	2.049 (5)	Ru(2)-C(12)	2.357 (5)
Ru(2) – C(19)	2.379 (5)	Ru(2)–N	2-247 (4)
Ru(3)~Ru(4)	2.686(1)	Ru(3)-C(7)	1.876 (6)
Ru(3)-C(8)	1.876 (6)	Ru(3)-C(9)	2.011 (6)
Ru(3)-C(12)	2.299 (5)	Ru(3)-C(19)	2.425 (5)
Ru(3)-N	2.197 (4)	Ru(4)-C(6)	2.099 (6)
Ru(4)-C(9)	2.257 (6)	Ru(4)-C(10)	1.884 (6)
Ru(4)-C(11)	1.924 (6)	Ru(4)-C(12)	2.218 (5)
Ru(4) – N	2.196 (4)	Ru(1')-Ru(2')	2.712(1)
Ru(1')-Ru(4')	2.807(1)	Ru(1')-C(1')	1.880 (6)
Ru(1')-C(2')	1.966 (6)	Ru(1')-C(3')	1.910(5)
Ru(1')-C(19')	2.142 (5)	Ru(1')-N'	2.161 (4)
Ru(2')-Ru(3')	2.682(1)	Ru(2')-C(4')	1.898 (6)
Ru(2')-C(5')	1.886 (6)	Ru(2')-C(6')	1.994 (6)
Ru(2')-C(12')	2.305 (5)	Ru(2')-C(19')	2.418 (5)
Ru(2')-N'	2.189 (4)	Ru(3') - Ru(4')	2.706(1)
Ru(3')-C(6')	2.263 (6)	Ru(3')-C(9')	2.096 (5)
Ru(3')-C(10')	1.879 (6)	Ru(3')-C(11')	1.923 (6)
Ru(3')-C(12')	2.210 (5)	Ru(3')-N'	2.212 (4)
Ru(4')-C(7')	1.886 (6)	Ru(4')-C(8')	1.864 (6)
Ru(4')-C(9')	2.025 (5)	Ru(4')-C(12')	2.332 (5)
Ru(4')-C(19')	2.374 (5)	Ru(4')-N'	2.235 (4)

Fig. 1. Molecular structure and labeling scheme for [Ru₄(NPh)-(PhC₂Ph)(CO)₁₁]. One of two chemically identical but crystallographically independent molecules is shown.

Fig. 2. Cluster framework for $|Ru_4(NPh)(PhC_2Ph)(CO)_{11}|$ emphasizing the equatorial plane of the pentagonal bipyramidal structure.

Fig. 3. Unit-cell packing diagram as viewed down the a axis.

unique ($R_{int} = 2.31\%$), 7583 observed with $F_o > 6\sigma(F_o)$, 2507 unobserved reflections. Direct-methods (SOLV) structure solution; least-squares refinement on 776 parameters; all non-H atoms anisotropic, H atoms idealized and updated (C-H = 0.96 Å, U = 1.2 U of attached C); phenyl rings rigid planar hexagons (C-C = 1.395 Å). $R_F = 2.99\%$, $wR_F = 4.13\%$, S = 0.955, $w^{-1} = \sigma^2(F_o) + gF_o^2$, g = 0.001; $(\Delta/\sigma)_{max} = 0.733$; $\Delta\rho_{max} = 0.47$, $\Delta\rho_{min} = -0.45$ e Å⁻³; atomic scattering factors from International Tables for X-ray Crystallography (1974); SHELXTL computer program (Sheldrick, 1984).

Atomic and equivalent isotropic thermal parameters are given in Table 1 and selected bond lengths in Table 2. Fig. 1 shows the labeled molecular structure of the compound and Fig. 2 the tetraruthenium cluster framework with bridging CO groups. A unit-cell packing diagram is shown in Fig. 3.*

Related literature. The title compound is the phenyl analog of a structure previously reported by Blohm & Gladfelter (1986).

References

- BLOHM, M. L. & GLADFELTER, W. L. (1986). Organometallics, 5, 1049.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor, D. Reidel, Dordrecht.)
- SHELDRICK, G. M. (1984). SHELXTL Users Manual, version 4.1. Nicolet XRD Corp., Madison, WI, USA.

Acta Cryst. (1988). C44, 572–574

Bis(N,N-dimethylformamide)[o-(N-methyliminomethyl)phenyl]palladium(II) Tetrafluoroborate

By Arnold L. Rheingold* and Donna L. Staley

Department of Chemistry, University of Delaware, Newark, DE 19716, USA

(Received 18 September 1987; accepted 28 October 1987)

Abstract. $[PdC_6H_4(CH_2NCH_3)(C_3H_7NO)_2]^+.BF_4^-, M_r$ = 458.5, triclinic, $P\overline{1}$, a = 8.098 (2), b = 9.934 (3), $c = 12.860 (2) \text{ Å}, \ \alpha = 67.46 (2), \ \beta = 85.41 (2), \ \gamma =$ 80·22 (2)°, V = 941.5 (4) Å³, Z=2, $D_{r} =$ 1.617 g cm^{-3} , $\mu = 10.08 \text{ cm}^{-1}$ (Mo), λ (Mo K α) = 0.71073 Å, F(000) = 462, T = 296 K, $R_F = 5.01\%$ for 3141 observed reflections and 227 parameters. The Pd¹¹ coordination environment is nearly square planar with the Pd atom 0.08 Å above the plane. Pd-N 2.018 (5), Pd-C 1.949 (5), Pd-O 2.077 (4) and 2.178 (4) Å. The molecules associate as invertamer pairs with $Pd \cdots Pd = 3.488 (1) Å.$

0108-2701/88/030572-03\$03.00

Experimental. Yellow crystals of (1) from chloroform and diethyl ether, $0.3 \times 0.3 \times 0.4$ mm, Nicolet R_{3m} diffractometer with graphite monochromator, Wyckoff scans, lattice parameters from least-squares fit of 21 reflections ($23 \le 2\theta \le 33^{\circ}$), absorption correction unnecessary ($\mu = 10.08 \text{ cm}^{-1}$, uniform crystal shape), $2\theta_{\text{max}} = 52^{\circ}$ ($h = \pm 10$, $k = \pm 13$, l = +16), standard reflections 500, 250 and 129, variation $\le 2\%$. 3783 reflections collected, 3554 unique, $R_{\text{int}} = 2.67\%$, 3141 observed with $F_o \ge 3\sigma(F_o)$, 369 unobserved reflections, sharpened Patterson structure solution, least-squares refinement on 227 parameters, all non-hydrogen atoms anisotropic, H atoms idealized and updated [C-H = 0.96 Å, U = 1.2 U of attached C], BF₄ geometry

© 1988 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and full lists of bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44518 (70 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{*} Address correspondence to this author.